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Abstract

A calculation method has been developed for
the two-dimensional inviscid transonic flow a-~
round two-element airfoil systems, such as an
airfoil with a leading-edge slat or a trailing-
edge flap. Using a conformal mapping sequence the
flow field is mapped to an annular domain where
the two circles represent the two airfoil con~
tours. The full potential equation is solved in
this domain using a symmetric successive line
overrelaxation procedure.

Calculated results are presented for various
configurations and Mach numbers. Comparisons are
also made with some available experimental re-
sults which, however, show large viscous effects.

1. Introduction

Since Murman and Cole(1) introduced the mixed
central and upwind difference schemes in numeri-
cal transonies various efficient methods have
been devilogﬁd for transonic flow around single
airfoils\2,3), The case involving two elements in
transonic flow makes an analysis much more com-
plicated. This configuration is, however, of
great interest for the aerodynamicist wanting to
improve aircraft maneuverability in the transonic
speed regime using a leading edge slat or a
slotted trailing edge flap.

A calculation method based on small-disturb-
ance theory for the transonic, two-element problem
has been presented by Caughey(4Y. The slat bound-
ary conditions were applied along a streamline
in the incompressible flow about the main air-
foil, an approximation which might imply small or
large differences from the real flow depending on
the configuration.

An essential problem for the accurate treat-
ment of the two-element case is the design of a
suitable coordinate system. Conformal mapping
technique has proved to be a good tool for vari-
ous configur?tio?s such as single airfoils(2,3
and ?agelles 5,6), Por the two-element case
Ivesl? developed a conformal mapping where the
whole flow field was mapped to the region between
two concentric circles. This mapping has been
used i ? very recent paper by Grossman and
Melnik'\8) and in the present work. Because in
both cases the full potential equation is solved
for arbitrary two-element configurations using
the same type of coordinate system, the two meth-
ods are similar in many respects although they
have been developed indépendently.

The present work was initiated as a result of
a mutual interest from Dornier GmbH in Germany
and Saab-Scania to improve the computational
capability in the field of transonic high 1ift
systems.
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A coordinate system created by conformal mapp-
ing was chosen because it generally simplifies
both the boundary conditions and the equation.
However, the fact that the infinity is mapped to
a point in the annular region results in exten-
sive algebraic expressions in the final equation
for the reduced potential, and also causes some
nunerical problems due to large discretization
errors close to the infinity point. The equation
for the reduced potential is solved numerically
by type-dependent line relaxation, sweeping the
annular region in both circumferential directions
using a rotated upwind difference scheme in super-
sonie regioans.

The numerical schemes are written in non-con-
servative form. Although this is known to give
errors in shock jumps and locatigns c?mpared to
a fully conservative formulationl9>10/ it was
considered adequate at the present stage, because
the omission of all viscous effects probably has
greater influence on the pressure distribution
for many two-element configurations.

2. The mapping

The sequence of mappings leading from the
physical plane to the annulus is shown in Fig. 1
for a case with leading edge slat. The, mapping
is essentially the one derived by Ives(7 y where
a more detailed discussion of the various stages
can be found.
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slat configuration.
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A main contribution by Ives is the mapping step
from z3 to z, where the slat contour is trans-
formed to a near circle while the main airfoil
circle is kept a circle. To show that the trans-
formation has the latter property requires some

analysis, but the fact that image points with
respect to the circles are used suggests the
following alternative formulation of the irans-
formation
o~ ~ \1/k
T S e S i D
2, -2, B,-%,0  \ Bp=Banm  Za-3 (1)
4747 4 T4N 3 “3T 3 T3

Because of the properties of image points it
is obvious that the absolute value of both sides
is constant when z4 and %3 are on the circles.
Also the argument variation of both sides is con-
tinous for the circles. Thus the transformation
(1) should map the zz unit cirele to a circle in
z4 and also effect the slat contour in the same
way as Ives transformation.

Writing either of these two transformations as

7, (z,) = [FS(ZB)J "2

the further conditions needed for determining the
constants in the itransformations are

(2)

z, —>®

Zg 3 Z,

3

1/k
2,(2, o) =EF3(23,S)] 2,

s 1,2

(3)

z; o are the two singular points determined by
?
dFi
dz, 0
i

and which are located on the circles for both
transformations.

The computational plane is denoted zg in Fig.
1 and is rotated so that the infinity point is
located on the positive real axis. A simple polar
coordinate system (r,0) is used in this plane.

Fig. 2 illustrates the correspondence between
the grids in the computational and physical
planes. Indices attached to a few grid lines make
the relationship between the planes more clear.
It is suitable for the mesh point distribution in
the physical plane to use non-equidistant spacing
in r and 6.

The calculation of this rather complex mapping
requires only moderate computer times. This is
mainly because fast Fourier transform technigue
is used in the iterative sequences for calculat~
ing the series coefficients in the 2z, —> 4z and
25-» zg transformations. As an example, a napping
using 112 terms in the two series (N; and N,=112)
required only 8 seconds on a CDC 6600. The calcu~
lation of the mapping modulus [dz1/d26[ for all
mesh points, which is performed after that, gener-
ally requires more time.



Pig. 2 Corresponding grids in the computational
and physical planes.

3. HFlow analysis

Basic formulation

The potential equation transformed to the po-
lar coordinate system in the computational plane
is

2 2 2919 2®-q,° a%,”
(250,700, - == 0 + 2 boo * r
2 1
+ g (q13r + a4, 3 BQ) = 0 (4)

where ¢ is the velocity potential, q the abso-
lute value of the veloecity with the radial and
circumferential components qq and qy, & the sound
velocity and B the mapping modulus. The following
relations apply

1
49 = §¢r (52)
1
% =379 (50)
o = L5+ L (1-¢®) (6)
)
dz1
B = E;g (7)
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where Mg is the free stream Mach number and the
free stream value of q is set equal to 1.

The boundary conditions of zero normal velo-
¢city along the two circles give

2

where rs is the inner cirele radius.

0 for r = r_, 1 (8)

The mapping modulus B goes to zero at the two
trailing edge points, so the requirement of no
flow around the trailing edges gives the Kutta
conditions

@g =0 (9)

at the t.e. points

The reduced potential

Instead of the potential ¢ which is unbounded
and many-valued, a reduced potential is intro-
duced for use in the numerical calculations.
First, the terms are subtracted from ¢ which ac-
count for the undisturbed and circulatory flow
close to infinity. In the physical zi-coordinates
these well-known far field potentials are

£, = Re (21 e_ioc) (10)
t, = -[13-;-;[? w5 [ﬁtg (erot)J (11)

Here O is the angle of attack relative to the
xq-axis, n and are the circulations for
the main and secondary airfoil respectively, 04

is the polar angle in the 2Z;-plane and
R= V1-M 2 T?e expression 211) is originally due
to Iuaforalll),

Close to the infinity point the mapping is of
the form

ia
e

1
rele

a (12)

+ o(1)
T

Z1=

where a, and a, are real constants calculated in
the mapping procedure and Ty is the z6-coordinate
for the infinity point.

in the computational vari-

Rewriting f1 and f
without the

ables r,6 with the usé of Eg. (12
0(1) terms, then yields

- g -2
f1=2 52 (13)
Eh + r; -1 T
T, = 55— 8 (b3 (14)
with
S =c (r cos® - rg ) + s, r sin® (152)
T =c, rsind - 5, (r cose - ry) (15p)
¢y = cos (a2 -0) (16a)
s, = sin (a2 -0L) {160b)
g% =12+ 2 2% 2r r. cos® (17)

@ a4}



where O is the distance from a point r,0 o the
infinity point.

A third term has to be introduced to get a
single-valued reduced potential

f; = - 555 © (18)

The function f2 + £ gives the proper poten-
tial jumps r; and'f-s 2or paths around each of
the airfoils andrm + 1y for paths including both
airfoils. This is easily seen when considering
the corresponding paths in the computational
plane, for instance deduced from Fig. 1 or Fig. 2.

Thus a suitable reduced potential should be
L= ¢ - (f1 + I+ f3)

However, it was found convenient to introduce
another funetion. The reason for this is the fact
that all the boundary conditions are of Keumann
type, i.e. the flux due to A is prescribed along
all the boundaries. This situation might be ex-
pected to cause numerical problems, because the
two sides in Gauss' relation often will not match
exactly due to discretization errors. That means,
that the total flux created in the field, as giv-
en by the Poisson term in the equation, is not
exactly equal to the total flux through the bound-
aries, as prescribed by the boundary conditions.

Numerical problems in the form of very slow
convergence rates were encountered already for
incompressible test cases. They were cured by the
introduction of a part of the analytical solution
for g = 0, satisfying the boundary conditions

(f1r)s + 24, =0 for r=1x,, 1 (19)

where (f1 ) is the part of £y which is symmet-
rical in 8.°This arrangement ylelds smaller dis-
cretization errors along the boundaries and in
the flow field by eliminating large circumferen-
tial variations in %, along the boundaries caused
by (£1,)g+ The new boundary conditions, obtained
from Egs. (8) and {19), are

Xr = -(f1r)a -f; forr=rTg, 1 (20)
for the reduced potential
X=p (2, +2,+2,42) (21)

Here (f1r) is the antisymmetrical part of
f£4_. The fufic}ion f4 is a solution of Laplace's
eqliation

N
1 -k
£, = Z (4 r"+a_ ) coske (22)
k=1

with the coefficients dk and 4
Eq. (19), yielding -

a,e r. k r k '
171 @ 38 1
g =— =) - (-)] (23a)
k T [rs Tw rs'k - rsk

X determined using
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a,cy k T k
= 1o (rsrm) - -x—‘(;) - = (23b)

1
-k -k
Ts ~ Ts

The equation for the reduced potential

Heving regularized the mapping modulus close
to infinity by introducing

H= o628 (24)

the equation for the reduced potential can be
written

2 q
a -2 - E (.
DX+ DF + E1Hr * 3 Hy - 20 55 (r T cos6)

o2
- 29, & sino|l =0 (25)
202 '@
where D is the differential operator in Eq. (4)
2 2 2
D = (a2-q.2) P Ey% 2 29y 2
1 ar2 r arae r2 ag2
2 2
a“+q
2 o
+ T 37 (28)
and
F=f +f,+%;+7%, (27)
The velocity components are
d2
9y =37 (P + %) (28a)
62
9, = 7 (Fg + %) (280)

Close to the infinity point these expressions
become

a, -cos(29’-a2+OL) + o(o) (29a)

a4y -sin(29’-a2+0L) + o(g) (29b)

where Y is the angle to the infinity point, i.e.

rsiné (30)

tgW=
rcose-qb

The boundary conditions are given in Eq. (20},
and from Egs. (9),(14),(18) and (21) the Kutta
condition can be written

M oo + [, (Fog - 2= ~Xg-T1g-Tag  (31)
with

faq = ([ + ) T2
Eq. (31) is evaluated at the two trailing edge

points yielding two linear equations for the two
unknowns r; and s



4. PFinite difference procedure

Rotated scheme

The streamlines in the computational plane
for a slatted airfoil case are shown in Fig. 3.
It is clear from the figure, that in supersonic
regions a rotated difference scheme must be used,
so that a locally correct upwind differencing is
obtained.

MAIN AIRFOIL

SUPERSONIC REGIONS

Fig., 3 Streamline pattern in the computational
plane for a leading edge slat configura-
tion,

The rotated scheme is obtained in the usual
way, introduced by Jameson\12), by grouping the
second order derivatives of X in two parts, one
representing streamwise differentiation and the
other normal differentiation. In the present
case this gives

2 2
2 2 2,95 )
(a%-e, )7, - 2 x&e + 2 xbe =
2
2 2v1 [ 2 949, 9
(a Q) 2E1zrr+2 r xr'6+-§x99
q r
2
210 2 419, 4
ta q2szrr_2 T xze"rz Yoo

= (aP-a®y  + &%, + 0 (X, X)) (52)

Thus, in supersonic regions upwind differen-
ces are used for all terms in the first square
bracket and central differences for all terms in
the second square bracket.

Grid system and sweep pattern

One grid line was always located along the
real axis passing through the infinity point.
The varying grid spacing around the circumference
was controlled by an analytic expression relat-
ing 8 to an angle 8' for which equidistant spac-
ing was applied.

In the radial direction a logaritmic grid
line distribution was used, i.e. dr is propor-
tional to r. The grid was chosen so that the in-~
finity point was not too close to a grid point.
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The problem of finding a suitable sweep pat-
tern for the relaxation procedure can be solved
in various ways. To get a simple updating system
working for all cases a symmetric successive
overrelaxation system was chosen by updating
lines of constant ©, sweeping back and forth in
circunferential direction. When sweeping through
supersonic regions, the reduced potential was up-
dated only if the sweep direction was less than
90 degrees different from the flow direction,
otherwise the potential in the supersonic points
was kept unchanged. Thus, each supersonic point
was updated once and each subsonic point twice in
a complete back and forth sweep.

The sweep starting and reversing line can be
chosen freely. In most cases it was located some-
where around © = 90° in order not to interfere
with the infinity and trailing edge regions.

The Kuttae conditions, Eq. (31), were applied
after each flow field sweep. Because the trailing
edge points generally do not coincide with grid
points, linear interpolation was used fox~19.

The infinity region

The numerical difficulties that might occur
when Neumann conditions are prescribed for all
the boundaries become apparent again for Mach
numbers greater than 0. This is because all terus
in the potential equation (2%) then become sig-
nificant, many of which are heavily varying close
to the infinity point. Although the reduced po-
tential X is single-valued and bounded at the in-
finity point, this is not the case for DX which
is unbounded for zg approaching the infinity
point., Thus the discretization errors are ex-
pected to be large in a region around the in-
finity point, although analytical expressions
are used for evaluating all terms in DF in Eq.
{25). The numerical effect of this is, that the
meximum residual (i.e. the largest error in the
difference equation) does not converge to any
prescribed small amount but gradually assumes &
constant value.

It should be noted that increasing errors in
2 when approaching the infinity point normally
do not mean increasing errors in the veloeity
components, because the contribution from % to
gq and g5 is of order g2 close to the infinity
point, while the leading terms are of order 1 and
O as seen from Egqs. (29a) and (29b).

To improve the convergence in the relaxation
procedure, Dirichlet type boundary conditions
were introduced along a small grid rectangle en-
closing the infinity point. This was done by
freezing the potential values on the grid rec-
tangle after the initial iteration phase did not
converge any more. Then, continued iterations on
the annulus with the region around the infinity
point excluded gives convergence to any prescrib-
ed level {slower for smaller regions around the
infinity point).

This can be regarded as applying a sort of
far field conditions. The changes in velocities
and circulations during the second iteration
phase were generally small, for instance less
than 2 % in the circulations for typical cases.



Another way of improving the convergence,
which has not been tried, would be to get rid of
the numerically generated sources in the flow-
field by solving the potential equation in fully
conservative form.

Grossmann and Melnik(8) do not report con-
vergence problems of the type encountered here.
They use the same equation with the same reduced
potential except for f,, but a different sweep
system. Their approach of having a grid point
coineiding with the infinity point with prescrib-
ed potential can be regarded as a weaker version
of the present approach of freezing the poten-
tial in a few points around the infinity.

5, Resultis

Most of the calculations presented here were
made on a grid with 40x60 points in the radial
and circumferential directions respectively. The
computations were made with a program which is
not very optimized and has no mesh refinement
capability, so the typical computing times of 5-
10 minutes on CDC 6600 are expected to be re-
duced for a more efficient program version.

The program works both for airfoils with lead-
ing edge slats and trailing edge flaps, but be-
cause of a greater current interest in the lead-
ing edge slat configurations, these dominate the
results.

In Pig., 4 a comparison is made between the
present method and a Douglas-Neumann calculation
for the incompressible flow around a NACA 65o-
215 with a leading edge slat. The discrepancies
in the pressure for the rear part of the slat
are probably the result of too few panels in
this region in the Douglas-Neumann calculation.

There seems to be a lack of experimentally
determined pressure distributions for two-ele-
ment configurations in traunsoniec flow without
too large viscous effects. The experimental re-
sults shown in Figs. 5 and 6 for lach numbers
0.6 and 0.7 were obtained for an airfoil-slat
configuration, denoted #1.1, developed at
Dornier GmbH. The wind tunnel model had sharp
corners both just behind the nose at the slat
and at the main airfoil nose. In the calcula-
tions these corners were smoothed out to facili-
tate the mapping. The two cases had different
slat settings as indicated in the figure. Be-
cause of the large viscous effects in the test
resultis and uncertainties in the experimental
angles of attack the calculations were made for
angles of attack which gave a reasonable agree-
ment with the experimental results.

The experiments are seen to indicate substan-
tial separated regions in both cases on the slat
lower surface behind the corner close to the
nose., The calculated high suction peaks in this
region are dashed, because they just reflect the
local curvature in the smoothing of the corner.
The discrepancy in the shape of the main airfoil
upper surface pressure distributions is mainly
due to the combined effect of the slat wake and
the upper surface boundary layer, which ends in
something close to separation at the trailing
edge. .
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In Fig. 7 the calculated supersonic regions
are shown for the case in PFig. 6.

The experimental results shown in Fig. 8 are
taken fro rather old tests with a slatted NACA
644010 13). The slat lower surface is seen to be
separated behind the nosejregion as in the pre-~
vious cases, while. the viscous effects on the
main airfoil are moderate, partly due to the
relatively low Mach number.

To see the effect of a more slender slat the
configuration in Fig. 8 was modified, |mainly on
the slat lower surface, and two cases were run
at My, = 0.5 and 0.7, Figs. 9 and 10. The pres-
sure distributions obtained for the slat lower
surface are seen to be accordingly modified,
reducing the risk for boundary layer separation
there.

As an example of a trailing edge flap flow
Fig. 11 shows the calculation results for a flow
with free stream Mach number 0.6 around a NACA
0012 with a flap of the same type and a chord
length of 0.25 (main airfoil chord units). The
flap angle was 15° and its leading edge was lo-
cated in x = 1, y = -0.025.

6. Concluding remarks

The present method has demonstrated its capa-
bility of solving the full potential equation
with accurate boundary conditions for transonic
flowfields around two-element configurations.

The solution process will be speeded up by the
introduction of mesh refinement capability and,
if it proves 1o work, some acceleration procedure
similar to that in Ref. 6.

The viscous effects constitute a greater prob-
lem for two-element airfoil systems than in the
single airfoil case. Although systems working
effectively in transonic flow will not have
large separated regions, displacement effects of
merged boundary layers on modern supercritical
airfoils will be large enough to motivate a fur-
ther development of the analysis methods. In the
present case & suitable approach, which would
not involve the mapping procedure, might be 1o
modify the boundary conditions. Instead of zero
normal flow a wall outflow is prescribed, pro-
portional to the rate of increase in the dis-
placement thickness, a technique which has been
effective for single airfoils.

When viscous corrections are included the po-
tential equation should be solved in fully con-
servative form. However, in a transonic method
giving really good agreement with experiments
for a wide class of configurations, an effective
shock wave~boundary layer interaction model musi
be ineluded, which still has to be developed.
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Appendix
Calculation of DF in Eq. (25)

The operator D defined in Eq. (26) may be
written

2
D=a DL+Dq (a1)

where DL is the Laplace operator

2 2
DL=-3—2+-;--§;+-12--§—— (a2)
ar r< 20
and 2 2 2 2
b 220 Pl 32 % a2
aQ 1 3.2 T 310 T 2 392
2
)
M- (43)
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F consists, according to Eq. (27), of the 4
terms £1 to £, defined in Egs. (13),(14),(18)
and (223, of which f3 does not contribute to DF.
The caleculation of DI is straightforward, so
only D(f4 + fo) is considered here.

Because f41 is a harmonic function one obtains

2

D, £, + D (44)

D(f1+f2) =Dy £1+8 Dy £

q T2

The first and second order derivatives of f1,
needed for the first term in (A4) and for the
velocity components, etc., may be written

a

1

fp=57 (c1 8y + 8; &) (a5)
a,r

f19 = —8-2 (01 g2 - S.] 81) (A6)
T

1= 35 | -2 (r-xpcos8) £,
+ 2 qnsine-% f1?] (47)

. 2 241
-2rr  siné £ ~(rS-r )'; f1€;l (48)

fe= 3|
2 2 .
f‘l%: 81;2- (r -rw) f1r-2rm81n6 f18] (49)
where
g = 2Ty - (r? + er) coso
g = -(r2 - raf) siné

The constants a4, ¢y and sq are defined in Zgs.
(12),(16a) and 216b3 and ¢, the distance to the
infinity point, in Eq. (17).

The corresponding derivatives of f2 nay be
written

T3, = ~hp To 9ind (410)
fpg =hy T (r-rop cos6) (a11)
by

fzrr =2 -51- Top 51n6 |r-Ie, cose

- 11002 -'f: (T-%s1)] (a12)

25in6
Tog = by Top (-cOS0 + B h3) (413)
_ : _ 2({r-npcose 1
f269 = B r[%n51n9 v h%] (a14)
with

h, = 32 + (52T2

rs+rm Jd_
2T b,

2 =P

TT,, 5ind - Ivia? T (S + c1rm)

V1 - 12

The functions S and T are defined in Egs. (15&)
and (15b),

=2
#

o>
]



Finally, for the Laplacian operating on f2
the expressions above give

hp

2 o B2
D £, = 2 g ST B, (415)
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Fig. 4 Pressure distributions in incompressible
flow around NACA 650-215 with leading
edge slat.

)
|
0 o EXPERIMENT
] M=0.6
I a=83°
:} Re =2. x106
=20 4 — PRESENT METHOD
I M =06
” o=46°
I
*
Col ; i
-10- || .
Cp l'
{ @
e s
6
l"@
o+H o
11
lol \e\o;
|
-3
[}
10-pb E]a
0 07 020 05 xic 10

Pig. 5 Pressure distributions on airfoeil F1.1
with leading edge slat,

132

© EXPERIMENT
M=0.7
a=71°
Re =22 x106
— PRESENT METHOD

M=07
a=36°

Fig. 6 Pressure distributions on airfoil F1.1
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Pig. 7 Calculated supersonic regions for air-
foil F1.1 with leading edge slat.
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Pig. 10 Calculated pressure distribution on
Fig. 8 Pressure distributions on NACA 644010 N‘;G{: 644010 with modified leading edge
with leading edge slat. siat.
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Pig. § Celculated pressure distribution on NACA
64A010 with modified leading edge slat, Fig. 11 Calculated pressure distribution on
NACA 0012 with NACA 0012 trailing edge

flap.
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